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Necessary and sufficient conditions are found for ellipticity of the equilibrium equations of a homogeneous isotropie compressible 
elastic material. These conditions comprise a finite system of elementary inequalities imposing explicit constraints on the strain 
energy density of the material and the principal relative elongations, as well as a series of relationships for domains in which 
certain polynomials of one real variable, whose coefficients are determined by the energy density function and the principal 
elongations, remain constant in sign. The degrees of the polynomials are one, two and six, respectively. An effective sufficient 
condition is formulated that guarantees ellipticity of the equilibrium equations and does not contain any auxiliary parameters. 
It is shown that if the material satisfies certain physically plausible and not overly restrictive conditions, the ellipticity criterion 
admits of a simpler formulation, obviating the need to investigate polynomials. 

The ellipticity condition for the equilibrium equations of a non-linearly elastic medium [1-3], which excludes the 
existence of weak discontinuity surfaces of the field of displacements, imposes certain restrictions on the strain 
energy density of an elastic material 1-I and may be considered one of the constitutive inequalities of the non-linear 
theory of elasticity [1, 2]. An alternative viewpoint associates the breakdown of ellipticity in the equilibrium equations 
with certain effects involving loss of stability in elastic bodies [4-7]. Each of these approaches indicates the 
significance of the ellipticity concept in the theory of elasticity. 

Before giving rigorous definitions, we will introduce some notation. Let w and W be the domains occupied by 
an elastic body before and after deformation, respectively, and r and R the position vectors of an arbitrary particle 
in configurations w and W, respectively. A deformation of the body will be any continuously differentiable and 
bijective transformation R = f ir)  of w onto the domain W = f(w) which preserves the orientation at each point 
r e w. It is assumed that the material is compressible and hyperelastie [1, 2], that is, it possesses a potential energy 
function II = II(r, C) where C = VR is the deformation gradient. Let em (m = 1, 2, 3) denote the unit vectors of 
some fixed Cartesian system of coordinates. Then the equilibrium equations of the elastic body may be written as 
follows [3]: 

32Fl(r, C) t)2Xl(r) 32Fl(r, C) 
- - ~  + 9 o ( r ) g j ( r , C ) = O  0=1 ,2 ,3 )  (0.1) 

~C~bCkl ~xi3xk ~xi~C o 

where xk, Xi, Cta = OX/OXk, gk (k, l = 1, 2, 3) are the components of the quantities relative to the basis ca, e2, e3, g 
= g(r, C) is the density of body forces, and P0 = p0(r) is the density of the material in the reference configuration 
w. Summation from 1 to 3 is assumed over repeated indices. The second derivatives of the potential l-I(r, C) which 
occur in Eq. (0.1), as well as the quantities p0(r) and g(r, C), are assumed to be continuous in their domains of 
definition. For the density p0(r) this domain is the set is the set w, and for the density g(r, C) it is the set w x D, 
where D is the space of non-singular tensors of rank two over Euclidean three-space, equipped with the Euclidean 
norm [1, 2]. 

System (0.1) is quasilinear, since it is linear in the highest-order derivatives of the unknown functions Xt(r) (l 
= 1, 2, 3). The fourth-rank tensor A = A(r, C) with componentsA#u = 321-I1~C00C~ relative to the basis el, e2, e3 
is known as the elasticity tensor [1, 2]. 

Definition 1. A statically possible deformation of the elastic body described above is any twice differentiable and 
bijective mapping R = f(r) of the set w onto the set IV= f(w) which satisfies the equilibrium equations (0.1) and 
preserves orientation at each point r e w. 

Definition 2. A quasi-linear system (0.1) is said to be elliptic [2] (or ordinarily elliptic) at a point r0 e w for a 
given statically possible deformation R. = f.(r) if, for any unit vector a 
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det Aokl[ro,C.(ro)]aiakllj.t=l.2.3~:O ( a . a=  1) (0.2) 

C , = V R , = V f , ( r ) ,  am=a'em (m=1,2,3) 

If condition (0.2) is satisfied at each point r0 ¢ w, system (0.1) is said to be elliptic for the statically possible 
deformation R. = f.(r). Finally, system (0.1) is said to be elliptic in w if it has this property for any statically possible 
deformation of the body. 

Definition 3. A quasilinear system (0.1) satisfies Hadamard's inequality [1, 2] (or is weakly elliptic) at a point 
r0 ~ w for a given statically possible deformation R. = f .(r)  if, for any pair of unit vectors a, b 

Aijla[ro,C,(ro)]aiakbjbl ;~ 0 (a .a  = b-b = !) (0.3) 

If condition (0.3) is satisfied at each point r0 E w, we shall say that the system satisfies Hadamard's inequality for 
the deformation R. = f.(r). Finally, a quasilinear system (0.1) satisfies Hadamard's inequality in the domain w if 
it has this property for any statically possible deformation of the body. 

The properties of strong ellipticity and positive longitudinal elasticity [1, 2] are defined in similar terms; the 
respective conditions on the tensor A are 

Aijkl[ro,C,(ro)]aiakbjb I >0 ( a . a = b . b = l )  (0.4) 

Aij~d[ro,C,(ro)]aiakaja I > 0 (a .a  = 1) (0.5) 

It follows from (0.2)-(0.5) that strong ellipticity implies Hadamard's inequality, ordinary ellipticity and positive 
longitudinal elasticity. 

The physical meaning of these ideas is as follows. Hadamard's inequality (0.3) is a necessary condition for an 
arbitrary statically possible deformation of an elastic body to be stable with respect to "dead" external forces, and 
also under mixed boundary conditions, when displacements are prestadbed on part of the body's surface and a "dead" 
load on the remainder. In addition, it guarantees that the velocities of propagation of acceleration waves in an 
elastic medium are real [1, 2]. 

Strong elliptieity (0.4) guarantees stability of a homogeneous deformation of an elastic body with a rigidly attached 
boundary surface; it also implies that the squares of the velocities of propagation of acceleration waves in an elastic 
medium are positive [1, 2]. It is also a necessary condition for existence "in the small", i.e. in a brief time interval, 
of a solution of the first boundary-value problem (with displacements prescribed on the boundary) of the dynamic 
equations of the non-linear theory of elasticity [8]. In addition, if the external forces applied to the body are 
conservative, when the corresponding boundary-value problem for the equilibrium equations (0.1) reduce to the 
problem of determining when the potential energy functional of the body is stationary, the strong ellipticity condition 
plays an important role in investigating whether the functions that reach a stationary value are regular or not [9]. 

Positive longitudinal elasticity (0.5) is a necessary condition for the existence of at least one longitudinal 
acceleration wave in an elastic body [1]. At first glance, this statement might appear trivial; but one must bear in 
mind that in a compressible, non-linearly elastic medium, unlike the situation in linearly elastic media, an acceleration 
wave is in general neither longitudinal nor transverse. 

Finally, a most important corollary of ordinary ellipticity of Eqs (0.1) in a domain w is that any statically possible 
deformation of the body is a twice continuously differentiable mapping of w onto a domain D. In other words, if 
system (0.1) is elliptic in w, then in the equilibrium state of the body the displacement field cannot have any weak 
discontinuity surfaces. Moreover, it has been proved [10] that for an isotropic incompressible material satisfying 
the Baker-Ericksen inequalities [1, 2] (see below, (2.17)), ellipticity is equivalent to strong ellipticity, so that ellipticity 
guarantees the existence of all the effects just associated with strong elipticity. 

It should be mentioned that the results of this paper will imply that, for an isotropic compressible elastic material 
+ 

satisfying the Baker-Ericksen inequalities and the TE -conditions [1], ellipticity ensures that the squares of the 
velocities of propagation of weak discontinuity waves are positive, at least for aH directions N that lie in the principal 

r planes of the Finger strain tensor F = C • C [1, 2] (the superscript Tindicates transposition of second-rank tensors). 
But if the tensor F is transtropic or isotropic at a point r0 of the body, the squares of the velocities of propagation 
of the acceleration waves are positive at r0 for any wave normal N. 

Note that under the previous assumptions as to the regularity of the quantities p0(r), g(r, C), II(r, C) it can be 
shown that, for any compressible hyperelastic material (including inhomogeneous and anisotropic materials), the 
properties of ordinary and weak ellipticity together are equivalent to strong ellipticity. 

Since the ideas described above are defined in terms of the strain energy density II(r, c) of the material, one 
can associate them directly with the material, speaking, say, of the latter's weak or strong ellipticity. The definitions 
adopted here can also be generalized to more complicated (not necessarily quasilinear) non-linear systems. 

The main purpose of this paper is to establish new relations among the properties of ordinary, weak and strong 
ellipticity (as well as further inequalities of the non-linear theory of elasticity), and also to simplify the ordinary 
ellipticity criterion (0.2), reducing it to a form more convenient for practical purposes. Effective ways of verifying 
conditions (0.3) and (0.4) for isotropic elastic materials are already known (see below, (2.8) and (2.10), for the 
relevant references). The same is true of positive longitudinal elasticity [11]. 
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Conditions (0.2)-(0.5) are not infrequently formulated in terms of the acoustic tensor of the elastic medium, 
Q = Q(N) [1-3], which is related to the elasticity tensor A by the formula 

Q = N • C r .  A T(3,4) • C • N (0.6) 

where N is an arbitrary unit vector. Apart from N, Q also depends on r and C, though these arguments have been 
omitted for brevity. The label T(3, 4) in (0.6) denotes transposition of the fourth-rank tensor A with respect to the 
third and fourth indices. We know [1, 2] that the eigenvalues Qra (m = 1, 2, 3) of Q(N), called the acoustic numbers, 
can be expressed in terms of the velocities s,, (m = 1, 2, 3) of propagation of acceleration waves with wave normal 
N; the formula is Qm = Ps 2, where p is the density of the medium in the actual configuration. Since C is a non- 
singular tensor, it is clear that Hadamard's inequality (0.3) (the strong ellipticity condition (0.4)) is equivalent to 
the condition that the tensor Q(N) be positive semi-definite (positive definite) for all directions N; while the condition 
of positive longitudinal elasticity (0.5) reduces to the requirement that N. Q(N). N > 0 (V N : N. N = 1). 

1. In terms of  the acoustic tensor Q(N), the ellipticity condition for the equilibrium equations (0.1) 
can be written as follows [3]: 

d e t Q ( N ) ~ 0  ( V N : N . N = I )  (1.1) 

Since this relationship involves three arbitrary parameters (the components of the normal N), it is usually 
quite difficult to verify inequality (1.1) for actual materials. It is therefore important to derive conditions, 
directly involving the potential II and deformation gradient C (at a fixed point r0 of w), that do not 
contain any subsidiary parameters and guarantee the validity of condition (1.1) for any N (N.  N = 1). 
This problem was solved for a homogeneous, isotropic, incompressible material in [10], where elimination 
of  the vector N led to a system of elementary inequalities equivalent to the ellipticity condition and 
imposing explicit restrictions on the principal extensions a~q (q = 1, 2, 3) [1, 2] and the first and second 
derivatives of  the potential II with respect to them. Necessary and sufficient conditions have been found 
for ellipticity of  the equilibrium equations of  the plane theory of  elasticity in the case of compressible 
[12] and incompressible [13] materials. 

Analogous conditions will be derived below for the three-dimensional equilibrium equations (0.1) of a 
compress~le, non-linearly elastic medium, on the assumption that it is homogeneous and isotropic. In that 
case the acoustic tensor Q(N) does not depend explicitly on the position vector r, while the principle of 
material objectivity [1, 2] reduces the dependence on the deformation gradient C to dependence on the 
Finger strain tensor F = C r .  C. In addition, the potential 17 is a function of the principal stretches only. 

We will use the known representation of  the components of the acoustic tensor Q(N) relative to the 
principal axes of  the tensor F [1-3] (i, j, k stands for an arbitrary permutation of the indices 1, 2, 3) 

JQij = "~knigj ,  g q  = "OqNq 

JQkk = ~ j g ?  +{Xi M2 +~kM 2, J --- det  C 

(1.2) 

a k = (FIi~ i - H j ~ j )  / Oa/2 - ~2), 13 k = 17• (1.3) 

~[k = (~[~ -- ~[k ) I 2, ~[~ .= +IIij + (Vii "m" I'Ij ) / ('O i ~ "Oj ) 

I'I m E~17[~t)m, I'Imn -~o2rIl~l)mO'Dn (m.n=l ,2 ,3 )  

where Nq are the components of  N relative to an orthonormal basis E consisting of  eigenvectors of the 
Finger tensor. Throughout this paper, q = 1, 2, 3. Henceforth, unless otherwise stated, all components 
of  non-scalar quantities will be taken relative to the basis E. The function H(~I, a)2, ~3) is assumed to 
be twice continuously differentiable in its domain of definition (~1 > 0, ~2 > 0, ~3 > 0) and symmetric 
(i.e. invariant with respect to any permutation of its arguments). 

The above symmetry is implied by the assumption that the material is isotropic. Thus, the quantifies O.q, 
13q, 7q, "/q, expressed in terms of  the potential 17 and principal extensions t~q, exist and are continuous 
for any positive values of  ~1, t~2 and ~3. These quantities play an auxiliary role and, with the exception 
of  O~q and I~q, do not  admit of  an immediate mechanical interpretation. As to Otq and 13q, they are pro- 
portional to the squares of the velocities of propagation of the principal acceleration waves [1, 2] in a 
homogeneously deformed elastic medium with principal extensions Dq. To be precise: if i , j ,  k is any permu- 
tation of  the numbers 1, 2, 3 and we let s~  denote the velocity of the principal longitudinal wave, which 
propagates along the kth principal direction of the Finger tensor, and let sij denote the velocity of the 
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principal transverse wave, which propagates in the ith and is polarized along thejth principal directions, 
then 

_ 

1)j `ok 

It turns out that in real elastic materials the quantities o~, I~k, Yq, T~ may be determined empirically, 
• • • " I  

through purely static experiments. In fact, it follows from formulae (1.3) and the law of state of an 
isotropic elastic body in Finger's form [1, 2] that 

2 O~ k = J ( t  i - t j  ) / ('O 2 - 1)j ), ~Jk = J1)-kltk,k 

2 2 _ `0~ ) + (ti,j1)j + 2Tk = 1)k [(ti - t j  )(1) 2 + 1)j ) / (`0i tj,i1)i )] 

27"k = +'Ok [(ti -- t j  )(1)i +- 1)j ) / (1)i -T- 1) j ) + (ti,j1) j + tj,il) i )] 

t m . n = ~ t m l ~ O  n (m,n = 1,2,3), J = 1)11)2`03 

where tq are the principal Cauchy stresses, which is an isotropic material are functions of the principal 
extensions 1)q. Note that the squares of the principal extensions 1)q are the eigenvalues of the tensor F, 
while the numbers 1)q- 1 are the principal relative elongations. 

Using (1.2), we can write 

j3 de tQ= W(m)-- $1m 3 +62m 3 +63m 3 + (£12ml + E21m2)m 2 + (E23m2 +e32m3) m 2 + 

(1.4) 
+(e31m 3 + ~13ml )m 2 + Omlm2m3 

2 ~k = ~kO~iaj mq - Mq , 

rk  = fliflj  + Ot~ -- y2,  eV = ai~¢ j + Otjakfl  k (1.5) 

3 
0 =~1~2~3 +2(0~1t~2(13 +717273 )+ ~ ~qTqTq 

q=l 

where m is the vector with components mq relative to the basis E. 

L e m m a  1. Inequality (1.1) is valid if and only if the form q~(m) is either positive for all non-zero m 
or negative for all of them. 

Proof .  Indeed, otherwise, since q~(m) is a continuous function, there must be a value m ° of m such 
that W(m °) = 0; but by (1.4) this violates condition (1.1). 

Before formulating the main theorem, we introduce some notation 

Aki(t)  = eijt + Eft, Bki(t)  = ~kjt 2 + Ot + eki 

Cki(t  ) = t~i t3 + £jkt  2 + Elk t + ~j  (1.6) 

3 3 108~)2C2 i ( t )_ [Ak i ( t )Bk i ( t )+9~kCk i ( t ) ]2  Dki ( t )  = 4[~kB~i(t)  + Cki(t)Aki (t)] + 

R ÷ = {t ~ R: t  > 0}, Xki = {t ~ R+:Dki( t )  > O} (1.7) 

Yk/= {t ¢ R+: A~(t)B~(t) > 0} 

where R is the set of real numbers and t is a real variable. Let Vdenote the space of principal extensions, 
i.e. the collection of points `0 --- (,ol, 1)2, 1)3) of real three-space R, with positive components (1)1,1)2, ̀ 03). 

Theorem  1. A homogeneous isotropic compressible elastic material has the ellipticity property at a 
given point `0 ~ Vif and only if, for any permutation i , j ,  k of the indices 1, 2, 3, the following conditions 
are satisfied 
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1. the following inequalities hold 

¢x~cxj > 0, 13il~j > 0 (1.8) 

[YZ + ~ / ~  sign([i/+[ij)][y~ + ~ / ~  sign([~i +~j)]sign[tx,([~i +[~1)]>0 

2. the sets Xk/, Yt,/form a cover of the positive semi-axis R +, i.e. 

Xki u Y~a = R+ (1.9) 

Proof. To prove the necessity of inequalities (1.8), consider the restriction ~Fk(mi, my) of the function 
~F(m) to the coordinate plane mk = 0 

tlJ s ( m  i , my ) = (o~jm i + o~im j )(ots~i m2 + o~k~ j m  2 + I¢,kmim j ) (1.10) 

Each of the factors on the fight of (1.10) must be non-zero for all my, mj such that m i >I O, mj >I O, 
mi + m i > 0. By virtue of the notation (1.3), (1.5) this immediately implies inequality (1.8). 

Note that conditions (1.8) are not only necessary but also sufficient for (1.1) to hold in the coordinate 
planes mq = 0. Henceforth, therefore, we may assume that mq > O. 

We will now write expression (1.4) for ~F(m) as an expansion in powers of mk 

~F(m) = 5k m~ + a s (m i, my )m~ + b s (m i , my )m s + c s (my, my ) (1.11) 

a s (my, my ) = Eiym i + Eyim j 

2 
b k (m i , my ) = 8~m2i + Omimy + £kimy 

ck(mi,my)=Sim3i +Ejsm~my +F.ikmi m2 +~ym] 

For fixed m i and my, the fight-hand side of (1.11) is a cubic polynomial in m k. Suppose first that 
[~k > 0. Then, be (1.8) and (1.5), we have 5k > 0, and by Lemma 1 it follows that for all non-zero m 

necessarily ~F(m) > 0. 
The necessary and sufficient conditions obtained in [10] for the cubic polynomial 

f ( t )=o~t  3 +~t  2 +Tt+8  (o~>0, 8 > 0 )  

to be positive for all t > 0 may be written in the form 

(e > O) v [([3 > O) ̂  (T > 0)] (1.12) 

g ~ 4(¢Xy 3 + ~[~3 ) + 1080[2~2 _ ( ~  + 9(X~)2 

Applied to the polynomial (1.11), this condition becomes 

[d k (m i, my) > 0] v {[a k (my, my ) > 0] ̂  [b s (m i, my ) > 0]} (1.13) 

d s (rn i , my ) - 4[~kb 3 ( m  i, m j  ) + c k (m  i , my )a 3 (m  i , my )] + 

+108~2c 2 ( m  i, m j  ) - [a k ( m  i, my )b s (m i, m j  ) + 98kc  s ( mi,  my )]2 

Note that the condition ck(mi, my) > 0 is satisfied for all admissible values of m i and m., because of 
(1.8) and the obvious equality ck(mi, my) = qgk(mi, my). '1 

Since my~ 0, we may define t = mi/m j. Then, in the notation of (1.6), condition (1.13) is equivalent to 

[Dki (t) > 01 v {[A~ (t) > 0] ^ [Bsi (t) > 0]} 

The ease ~lk < 0 is treated similarly. Here (1.14) is replaced by the condition 

[Dsi(t) > 0] v {[Aki(t ) < 0] ̂  [Bsi(t) < 0]} 

(1.14) 

(1.15) 
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Combining conditions (1.14) and (1.15), we obtain 

[Dki(t ) > O] v [Aki(t)B~(t ) > O] (1.16) 

The sign of I~k plays no part in condition (1.16). Since the condition must hold for any t > 0, we conclude, 
in view of the notation (1.7), that (1.9) is valid. 

A close analysis of the arguments up to this point will show that conditions (1.8) and (1.9) are not 
only necessary but also sufficient. The  theorem is proved. 

Remarks to Theorem 1. 1. Inequalities (1.8) indicate that if the ellipticity condition holds, the parameters % 
are either all positive or all negative. The same is true of the parameters I~k. From the physical point of view 
this means that the acoustic numbers for the principal transverse amplitudes are either all positive or all negative. 
The same is true for the acoustic numbers corresponding to the principal longitudinal amplitudes. Thus, eliipticity 
either entirely excludes the existence of principal waves or admits of the existence of all nine principal waves, of 
only three longitudinal waves or of only six transverse waves. No other version is consistent with ellipticity. By 
"principal" waves we mean here waves whose wave normals are directed along the principal axes of the Finger 
strain tensor. 

2. If inequalities (1.8) are valid for any permutation i, j, k of the numbers 1, 2, 3, it follows from the proof of 
the theorem that relations (1.9), considered for all possible permutations of the indices, are either all true or all 
false. Hence it follows that only one of the six equalities (1.9) is independent. Therefore, the ellipticity condition 
for a homogeneous isotropic compressible material is equivalent to a system of nine elementary inequalities (1.8) 
and one set-theoretical relation of type (1.9). This fact may be used to reduce the amount of computation to check 
for their correctness. 

Thus, in order  to determine whether a given material is or is not elliptic, one has to analyse a finite 
system of elementary inequalities (1.8) and to determine the domains in which the polynomials 
Dta(t), Ata(t), Bta(t) remain fixed in sign. For the last two, which are respectively linear and quadratic, 
the problem involves no difficulties and can be solved by analytical means. The polynomial Dki(t), 
however, is of degree six, so that, in general, determination of the domain Xta requires the use of 
computers. 

As an example, let us consider a Blatz-Ko material [2, 4] with potential 

l, 1 (.>0 (1.17) 

where Ix and v are constants (in particular, Ix is the shear modulus of the material for small deformations from the 
natural state), and I1 and/3 are the first and third principal invariants of the Finger strain tensor, which are related 
to the principal extensions by the relations 

2.2.2 (1.18) 

Using formulae (1.3), (1.5), (1.17) and (1.18), we obtain 

0ttc=~t, ~k =IX[I+(2V+I)x)~2I~ v ] 

7~ = ~t[l + (2V + I)U~ q ~]1/~v ] 

•k = ~t(~i + 13j ), 7k = ~t(2v + 1)~-t u] l / iv  (1.19) 

gij=l.t2(~i+2~k), 0 = 21a2(~1 +~2 +~3) 

Using formulae (1.19), one can verify inequalities (1.8) for any deformation. In addition, since in this case the 
parameters 0 and . ~  (p, q = 1, 2, 3) are positive for all admissible values of ~a, ~2, ~ it follows from (1.6) and 
(1.7) that Yk/ = R +, that is, equalities (1.9) are true. Thus, it follows from Theorem I that the material (1.17) is 
elliptic at each point ~ ¢ V. This could have been expected since, as shown in [2], this material is strongly elliptic 
for any deformation. 

Theorem 1 yields a sufficient condition for elliptieity of the equilibrium equations. We will first 
introduce some notation 

~'k =Sleek +Sje~k, tXki = 38k0e2i +t~2(38je'q +eike'ji) 
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Vki = ;la + ~ji(CjkEj 2 + 3Eik~'ij~ji 4- 3~J e2 ) 

2 + 3gikE2ijEji + ~jE3ij l t k= ~k + ~iE~i + 3Ejkl~ijEji 

~ki = 35kF'ki( 02 +gkiEkj )' Xk = 5kO( 02 +6EkiCkj) (1.20) 

~k = eikajk + 95i5j '  "q~ = ek/e/J 4- O£ji 4- 9$kEik 

Pk =4Z'k _~2 + 108~2~, q~i = 2P.ki-rlki~i + 10862$fik 

rki = 4vki - 112 - 2rlkj~i + 10852 (e~k + 2ejkSj ) 

S k = 2x t  - ~i~j - ~ki~kj 4- 108~2($i~j 4- eik~'J k ) 

P,i = Pir~ + 16s, q3i -(q~irki +9pisk )2 + lOSp/2s2 

Oki = rur ~ + 16s3q~j -(s~r~y + 9q~yrki) 2 + 108r2q~ . 
In this notation 

D~i(t) = Pj t6 + 2q~ t5 + r~j t4 + 2s~ t3 + rki t2 + 2q~it + Pi (1.21) 

Theorem 2. Suppose that the following conditions are satisfied at a point ~ e II: 
1. inequalities (1.8) hold for any permutation i,j, k of the indices 1, 2, 3; 
2. a permutation i , j ,k  of the numbers 1, 2, 3 exists such that at least one of the following combinations 

of conditions (1.22)-(1.30) holds 

O s i g n ( ~ ) + 2 ~  >0, e 2 + e j  2 > 0  

where 

(1.22) 

P i ~ O ,  pj>~O, rki>~O, rkj>~O, si>>-O, q~ki>O, tp/j>O (1.23) 

Pi >-0, py >>- O, qki >-0, qkj >~ 0, rki >10 

rkj ~ O, sk + ~ > 0  (1.24) 

Pi ~ O, pj ;~ O, qkj >~ O, rki I> O, s k ~ O, xkj > O, tpk i > 0 (1.25) 

Pi ~ O, pj >t O, qki >~ O, rkj >~ O, si >I O, Zki > O, 9kj > 0 (1.26) 

Pi >>" O, pj >t O, rkj >~ O, s k > O, Pki > O, q)Jcj >>" 0 (1.27) 

pi>~O, pj>-O, rki>~O, sk>O, pkj>O, tpki~>O (1.28) 

Pi >i0, pj >10, qki >~0, qkj >0, rki >0, O'/a >0  (1.29) 

pi>~O, pj>>-O, qta>O, qkj>~O, rkj>O, ffkj>O (1.30) 

tPki = qta + ~ ,  Xki = r~i +4 q~usk 

Then the ellipticity condition holds at a given point ~ e V of the material. 
For the proof one need only compare conditions (1.22)-(1.30) with expressions (1.6) and (1.21) for 

A~a(t), B~a(t), D~a(t) and use Theorem 1. 

2. If the point ~ ¢ Vunder consideration is such that. the. numbers, o~, [Iq (q = 1, 2, 3) are either, all 
positive or all negative, one can derive an ellipticity cntenon different from that of Theorem 1, m that 
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it does not require an investigation of  polynomials, but consists of  a finite system of elementary 
inequalities. We shall first prove an auxiliary proposition. 

Let  A be the collection of real quadratic forms in three real variables xl, x2 and x3. Let  
3 

L(x )=  ~ amXmX n, a m = a n m  (m ,n = l , 2 , 3 )  
ra,n=l 

X=(XI,X2,X3), A=lla,nnll (m,n = 1,2,3) 

P = { L e A : L ( x ) > O ,  x ~ R  3, x;e0} 

N = { L e A : L ( x ) < 0 ,  x ~ R  3, x;eO} (2.1) 

P ° = { L ~ A : L ( x ) > ~ O ,  x E R3.} 

N ° = { L ~ A : L ( x ) < ~ O ,  x E R  3 } 

L e m m a  2. For any form L ~ A 

(detA ;e0) ¢o {(L~ P ) v  (L ¢ N ) v [ ( L  ~ p 0 ) ^  

A(L ~ N °)]} A [VS: LI s - O] (2.2) 

where S is any plane in R 3 that passes through the origin O and L [ s denotes the restriction if L to S. 

Proof. Let el, e2, e3 be the natural basis of R 3. Let L denote the symmetric second-rank tensor over R 3 with 
component matrixA in the basis eb e2, e3. Then obviously 

L(x) = x -L. x (2.3) 

We will now use the fact that any symmetric second-rank tensor o v e r  R 3 has at least one orthogonal triple of 
eigenveetors. Let 11,/2 and/3 be an orthonormal trihedron of eigenveetors of L, let LI, L2 and L3 be the corresponding 
eigenvalues and let Xq be the components of a vector x relative to I1,12 and/3. Then it follows from (2.3) that 

L(x) = LtXI 2 +L2X2 2 +L3X3 2 (2.4) 

Apply the logical operation of negation of the equivalence (2.2) 

(det A = 0) ¢:~ [L ¢ (p0  \ p)] v [L ¢ (N o \ N)] v [3S: LI s -- 0] (2.5) 

Assuming that detA = 0, we shall show that the left-hand side of the statement (2.5) implies the right-hand side. 
Indeed, since the determinant of A is an invariant of L, it follows that detA = L1L2L 3. Consequently, a permutation 
i,j, k of the numbers 1, 2, 3 exists such that Lk -- 0. If at the same time Li >~ 0, L i >/0, it follows from (2.4) that L 
¢ P°W (see (2.1)). Similarly, i fLi ~< 0, Lj ~< 0 we get L ¢ N°\N. But i fLi > O, Lj < 0 or Li < 0, Lj > 0, it follows 
from (2.4) that 

L(x) = sign(L/)(IL/I ~ Xi+ILjl ~2 Xj )(ILi I ~2 Xi-ILjl ~ Xj ) 

i.e. L(x) vanishes identically in the planes ILi lU2X, . ± ILjI1/2Xj = O, each of which passes through the origin O. 
Thus the right-hand implication of (2.5) is valid. 

We will now prove the reverse implication, assuming that the right-hand side of (2.5) is valid. Omitting the trivial 
cases L e P°W and L ¢ Now, let us assume that a plane S exists containing the point O such that L Is -  0. Choosing 
a suitable permutation i, j, k of 1, 2, 3, we can always write the equation of S as Xk = XX/+ g~,  where ~ Ix are 
constants. We then deduce from (2.4) that 

LI s = (L i + Ltd. 2 )Xi 2 + (Lj + Lk~ 2 )X 2 + 2Lk~4xXiX j 

Since L [ s = 0, this implies the inequalities 

Li+Lk~.2=O, Lj+Lkl.t2=0, Lk2~tt=0 

But it is obvious that these equalities are mutually compatible only if L1L~L 3 = 0, completing the proof of the 
lemma. 
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Relations (2.2) and (2.5) have a simple geometrical interpretation. Consider the second-order surface 
x- L .  x = -_+ c ~ (c = const > 0), which may be associated with any self-adjoint linear transformation 
of the space R 3 and is otherwise known as the Cauchy quadric. Then formulae (2.5) and (2.2) mean 
that the Cauehy quadric for a singular transformation is a linear surface (in our case, either an elliptic 
cylinder, two conjugate hyperbolic cylinders or a pair of parallel planes); but for a non-singular trans- 
formation it is not linear and is reducible either to an ellipsoid or to a pair of conjugate hyperboloids 
(single- or double-sheeted). 

Lemma 2, which relates the condition det A ~ 0 to the behaviour of the form L(x) both over the 
whole of the space R 3 and'in arbitrary planes S through the origin O, is a major tool of the subsequent 
analysis. Consider the quadratic form O(M, x) corresponding to the acoustic tensor Q(N) (the vector 
M whose components in the basis Z are Mq = ~qNq, q = 1, 2, 3, appears here as a parameter) 

3 
2 + 2((O3XlX 2 + (olX2X 3 + (O2X3X l ) O(M,x) = Jx-Q(N) 'x  = Y~ 6qXq 

q=l 
(2.6) 

(Ok ="~kMiMj, (~k =~j M2 +O~i M2 +~k M2 

(i,j,k)=(1,2,3), (2,3,1), (3,1,2) 

Applying Lemma 2 to O(M, x), we obtain the following. 

Theorem 3. A homogeneous isotropic compressible elastic material has the ellipticity property at a 
given point ~ ~ V if and only if, for any non-zero vector M, the following statement is true 

{(O E P) v (O ~ N) v [(O ~ p0 ) ̂  (O ~ N °)]} ̂  [VS: ~1 s =- 0] (2.7) 

where S is an arbitrary plane in R 3 passing through the origin O and * I s  is the restriction of 
to S. 

Note that the condition • E P is equivalent to strong ellipticity of the material, while • E p0 means 
that the material satisfies Hadamard's inequality. The inclusions * E N, * ~ N 0 can be explained 
similarly, but applied to the potential H with reversed sign. It can be shown that for the form ~(M, x) 
to belong (for all M ~ 0) to the spaces P, N, p0 and N °, respectively, it is necessary and sufficient that 
(see, e.g. [15, 16]) 

o~t, > 0, [3~, > 0, G~: > 0, [(7 m < 0) ^ (7~ < 0)] ~ ~,~"" > 0 (2.8) 

a k <0, flk <0, H~ <0, [(y~" >O)^(T7 > 0 ) ] ~  ~'~"'" >0 (2.9) 

ch~, I> 0, [~l, ~> 0, O~:/> 0, [(7 m < 0 ) ^ ( 7 ~  < 0 ) ] ~ ' "  1> 0 (2.10) 

a ,  ~< o, l~k ~< O, H~ ~ o, [(~7' > o) ^ ( ~  > o)] ~ ~","/> o (2.11) 

(2.12) 

It is assumed here that the superscripts m and n take values plus or minus, with the product behaving 
in accordance with the multiplication rule for the numbers + 1 and -1. 

Theorem 4. If the point ~) e Vunder consideration is such that the parameters o~ and [~q are simul- 
taneously positive or simultaneously negative, then a necessary and sufficient condition for a homoge- 
neous isotropic compressible material to have the ellipticity property at t) ~ V is (i, j, k denotes an 
arbitrary permutation of the indices 1, 2, 3) 

)'~ sign(lz k)+ ~ > 0 

(O ¢ P) v (O ¢ N) v [(O ~ pO) ^ (ffj ~ N o)] 

(2.13) 

(2.14) 
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Proof. Necessity follows from Theorems 1 and 3, respectively. It remains to prove sufficiency. We 
will show that inequalities (2.13) imply 

VS: OI s ~ 0 (2.15) 

where S is a plane through the origin O. To do this, consider a plane S with equation xk = kxi + laxj 
(~., St = const). It follows from (2.6) that 

~ l s =  fkx? + gkx 2 + 2hkxix j 

fk =tTk~,2 + 2 0 ~  +tTi, gk =tTk]22 + 2~il.l +lTj 

h k = akTq.t + toiZ. +tojSt + (i) k 

Since by assumption the parameters, t~,. t~., .Ilk .are either all positive or all negative, it follows that 
t~k ~ O.Consequently, fk is a quadratic trmomml In ~, with non-zero leading coefficient. Its discriminant 
is 

-- 2 _[o{j~JiM: 4 4 A - to] - (~k(~i = + a i a k M  j + a j ~ k M  k + 

)M~ M k - y j  + ~i[~k )M2M? ] (2.16) 

The bracketed expression on the right of (2.16) is a quadratic form in M2i, M 2, M 2, all of whose coefficients, 
with the possible exception of the last, are positive by assumption. Since ~/~ + Y7 = 2aj, "/~- ~/j = 2~, 
as follows from (1.3), we deduce from (2.13) that 

a~ - y~ +flifl~ + 21txil fl~/fl~ =[7~ sign(tXj)+ fl~/fl~ ]x[Y 7 sign(t~j)+ fl~/fl~ ] > 0 

Consequently, A < 0 for any vector M other than zero. Therefore fk is either positive or negative for 
all ~. • R and all M other than zero. In any case, the restriction • Is is not identically zero. And since, 
by suitable choice of a permutation i , j ,  k of 1, 2, 3 we can write the equation of any plane S through 
the origin O as Xk = Zxi + pxj, the validity of condition (2.15) is thus established. 

Thus, conditions (2.13) and (2.14) imply condition (2.7). But then it follows from Theorem 3 that 
the material is elliptic. This proves the theorem. 

Corollaries to Theorems 3 and 4. 
1. If the given point ~ • Vis such that the parameters aq, I~q (q = 1, 2, 3) are either simultaneously 

positive or simultaneously negative, then a sufficient condition for ellipticity of the material at the point 
considered is 

~'~ sign(ak)+ ~ >0 
{[7 m sign(a k ) < 0] ^ [~t~ sign(a k ) < 0]} ~ ~ " " ,  0 

where i , j ,  k is an arbitrary permutation of the indices 1, 2, 3, and m, n is any combination of the signs 
plus/minus, and the quantities ~ n  are as defined by (2.12). 

2. Suppose that the following inequalities hold in the space of principal extensions 

ak>0,  k>0, 

Then a necessary and sufficient condition for the material to be elliptic at each point ~ • V is that its 
domain of strong ellipticity should coincide with the domain in which Hadamard's inequality is satisfied. 

3. If at each point ~ • V 

a k > 0 ,  [~k>0 

< 0 )  ^ < 0)1 - t> 0 

where i, j, k is an arbitrary permutation of the indices 1, 2, 3 and m, n is any combination of signs 
plus/minus, then the domains of ellipticity and strong ellipticity of the material coincide. 

The proofs of these corollaries are omitted. 
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To incorporate various physical considerations relating to the behaviour of elastic materials under 
deformation, different restrictions have been proposed, formulated as inequalities imposed on the 
constitutive relations of the elastic bodies, which they eaU constitutive or supplementary inequalities. 
Such, for example, are the Baker-Ericksen inequalities [1, 2, 17] 

(t i - 9 ) l ( ~ i - u j ) > O ,  u i ;~uj  (2.17) 

where tq (q = 1, 2, 3) are the principal stresses, i.e. the eigenvalues of the Cauehy stress tensor, which 
are simply the principal extensions in the case of an isotropic material. By the strong version of the 
Baker-Ericksen inequalities we shall mean, in addition to the condition that quotients of the form 
(ti - ti)/(~)i- 9i) should be positive for'o i # 9j, that these quotients have positive limits at ui ---> ui. 

Th'e conditions Otq/~Oq > 0 (no summation over q) are known as the TE+-inequalities [1, 2]." 
Some constitutive inequalities are formulated in differential form, as the condition that the contraction 

of the strain rate tensor with some frame-indifferent derivative with respect to time of the Canehy stress 
tensor should be positive. Examples are the Coleman-NoB inequalities [1, 2, 18] 

Hill's inequality [19] 

[ S ( C , ~ ) + T t r e - l ( ~ . T + T . ~ ) ] . .  ~>0  (~;~0) (2.18) 

[S(C,~)+Ttr~]..  ~>0  (~¢0)  (2.19) 

and the hydrostatic stability condition [20] 

S(C,~).. ~>0  (E*O) (2.20) 

where T is the Cauchy stress tensor, ~ is the strain rate tensor and S is the derivative of the stress tensor 
in Jaumann's sense. In an isotropie material, the dependence of S on the deformation gradient reduces 
to its dependence on the Finger strain tensor, and the function S(F, e) is easily calculated, given the 
potential II(~1, ~2, ~3). 

Note that the condition for the longitudinal elasticity to be positive may be expressed in terms of the 
tensor S, as follows: 

S(C, xx) .. xx > 0 ( x ,  0) (2.21) 

where x is any vector. 
Checking for ellipticity becomes easier if the elastic material is required to satisfy a constitutive 

inequality. More precisely the following holds. 

Theorem 5. Assume that at a point . ~ V at least one of the following conditions 1-4 holds 
1. the Baker-Ericksen inequalities (2.17) hold (strong version) and the material either satisfies the 

TE+-condition, the condition for its longitudinal elasticity to be positive (2.21), or the Coleman-NoU 
inequality (2.18); 

2. The TE+-condition and Hill's inequality (2.19) hold; 
3. the material is hydrostatically stable (2.20); 
4. the acoustic numbers for the principal longitudinal and principal transverse amplitudes are either 

all positive or all negative. 
Then conditions (2.13) and (2.14) are necessary and sufficient for the material to be elliptic at 

D~V.  
The proof, which uses Theorems 3 and 4, is omitted. 
Theorem 5 states that, subject to physically reasonable assumptions, the ellipticity criterion for a 

compressible material comprises a finite sequence of elementary inequalities involving no subsidiary 
parameters; there is no need to appeal to the general Theorem 1, which requires investigation of a sixth- 
degree polynomial. The composite condition (2.14) is easily interpreted using relations (2.8)-(2.11). 
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